

Rh Complexity Serology and DNA genotyping

Connie M. Westhoff, SBB, PhD
Scientific Director, American Red Cross, and
Adjunct, University of Pennsylvania,
Department of Pathology and Laboratory Medicine

Rh typing

- Why serologic D typing is not always straightforward
 - C and e typing also
- Summarize problems
 - How they present
 - Clinical implications
 - Examples
- Perspective role for genotyping in transfusion medicine
 - Current
 - Future

Why is D typing sometimes problematic?

- Multiple Methods Hospitals 91% tube test, 1% Solid phase, 8% Gel Some perform AHG test for weak D, others do not Donor Centers - Automated analyzers (Olympus PK), tube tests
- 2. <u>Different Reagents</u> Contain different clones Can react differently with weak or variant D antigens FDA - only reactivity with DIV, DVa, and DVI need be specified Results in D typing discrepancies
- 3. <u>Variability in expression of RhD protein</u> (~120 different genes = variations)

 All due to changes at the DNA level from "conventional" sequence

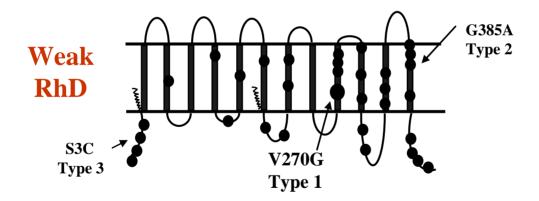
```
American
Red Cross

Molecular Blood Group
and Platelet Testing Laboratory
```

```
Weak D - 53 different mutations Partial D \sim 45 " " D_{el} \sim 8 " " others" \sim 18
```

Variation in expression of RhD

D Positive - Majority are "conventional"

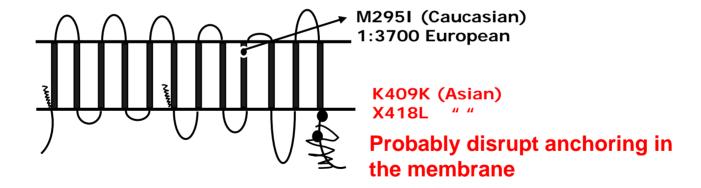

- Weak D previously "Du"
 - incidence- 0.2-1% wide population differences
 - requires indirect antiglobulin test to detect (depends on reagent)
- 2. \underline{D}_{el} very weak expression of D
 - "el" because adsorb and elute anti-D
- 3. Partial D previously called "mosaic"
 - "missing" part of RhD
 - type as D-positive
 - make anti-D
- 4. Depitopes expressed on Rhce proteins
 - cause D typing discrepancies

DHAR, Crawford, ceRT, ceSL

Weak D (Wagner et al. Blood 93:385, 1999)

- -single gene mutations intracellular or cytoplasmic
- -many different weak D (Type 1 thru 53 as circles)
- effect quantity of protein, but not D epitopes

usually do not make anti-D

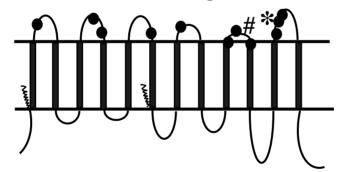


Reactivity of weak D is variable with different monoclonal antibodies and with different techniques

many 3+, but some very weak +/- or missed in IAT Our experience. - weak D type 2, but by Gel testing stronger

D_{el}

- type as <u>D negative</u>, (including IAT)
- adsorb and elute anti-D
 8 different mutations
 1/3 of Asians who type D negative; are also C+
 In Caucasians are C+ or E+


Recently "in the news" - have stimulated anti-D in recipients

- most would agree should be D positive as donors
- C or E serologic screening would eliminated from donor pool

Partial D

- type as D positive, <u>make anti-D</u>
- don't detect until make antibody
- mutations located on the extracellular surface altered D epitopes -

some are due to single mutations

DMH - L54P

#weak D type 15 - G282D

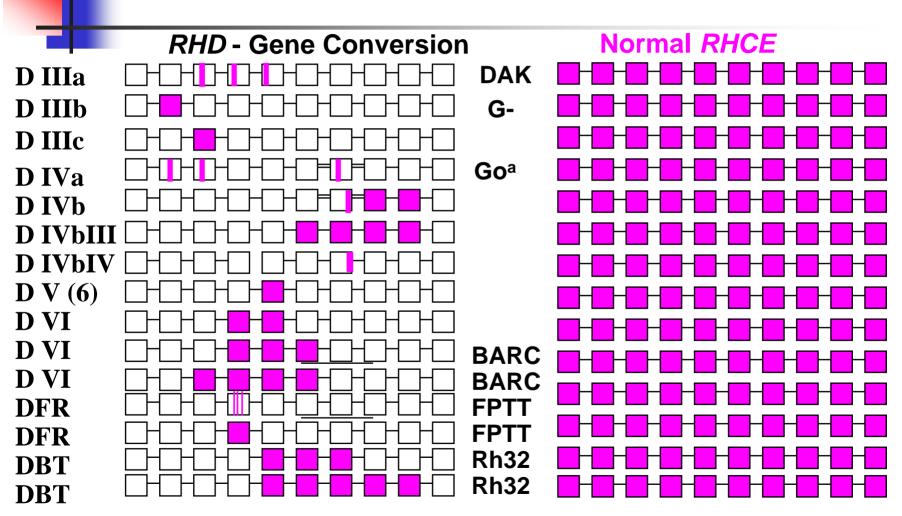
DVII - L110P

D^{HMI} - T283I

DFW - H166P

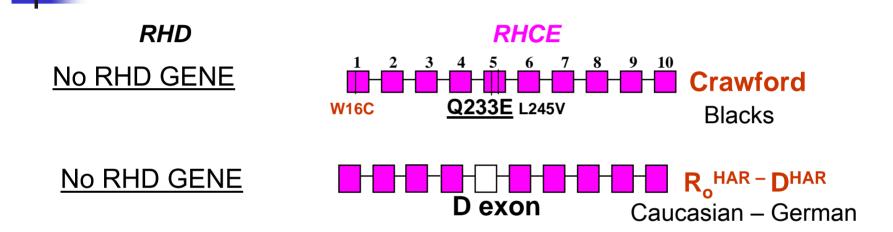
DIM - C285Y

DHR - R229K


DNU - G353R

DHO - K235T

O^{II} - A354R


*DNB - G355S- more common in Europe

Most Partial D's - RHD replaced with RHCE

Alter D epitopes and create new antigens

D epitopes expressed on Rhce

D-specific amino acid (s) in the Rhce protein strong reactivity with some monoclonal anti-D

In the US these are a major cause of D typing discrepancies that are referred for RHD gene investigation

FDA licensed reagents in use in U.S.

4 reagents for Tube testing, 1 for gel

REAGENT	IgM monoclonal IgG	
Gammaclone	GAMA401	F8D8 monoclonal
Immucor Series 4	MS201	MS26 monoclonal
Immucor Series 5	Th28	MS26 monoclonal
Ortho BioClone	MAD2	Human-polyclonal
Ortho Gel (ID-MTS)	MS201	

Only two contain same IgM clone
Clones can differ in reactivity with variant D antigens

Difference in reactivity of DHar and Crawford+RBCs with FDA licensed reagents

REAGENT	IgM monoclonal	IgG	D ^{Har}	Crawford
Gammaclone	GAMA401	F8D8 monoclonal	POS	POS
Immucor Series 4	MS201	MS26 monoclonal	POS	NEG
Immucor Series 5	Th28	MS26 monoclonal	POS	NEG
Ortho BioClone	MAD2	Human-polyclonal	NEG	NEG
Ortho Gel (ID-MTS)	MS201		POS	NEG

DHar and Crawford+ RBCs are non-reactive with human source polyclonal anti-D

Has contributed to perception in U.S. that D typing discrepancies are greater with monoclonal reagents

Case

81 year old African-American woman 2003- typed as D positive (3+ IS) - received 3 units

6/22/2006- admission for anemia, GI bleed D positive, antibody screen negative received 3 units D positive blood

7/4/2006 - strongly +DAT, low hgb, elevated bilirubin

Delayed transfusion reaction

Eluate and serum: Anti-D

Case

<u>Anti-D</u>	IS	RT	AHG
Gamma (DMB40-2)	3+	4+	NT
Gamma (DMB36-1)	3+	3+s	NT
Gamma <i>(D139-2)</i>	3+	3+	0
Immucor Series 4	0	0	0
Immucor Series 5	0	0	0
Ortho Bioclone	0	0	0

Gamma IgM clone – <u>strongly D positive</u>

Ortho and Immucor clones - D negative, weak D neg

D typing "recommendations"

As patients/recipients – should be D negative

		DHAR	Crawford	
Gammaclone	GAMA401	POS	POS	→ Donor
Immucor Series	MS201	POS	NEG	reagent
Immucor Series	TH28	POS (varies)	NEG	
Ortho BioClone	MAD2	NEG	NEG	→ Patient
Ortho Gel Card	MS201	POS	NEG	reagent

How often are these encountered?

Estimated that Crawford- 1:900 AA in Southern US D^{Har}? German background - higher in Midwest

Our experience – Crawford represent large number

Red Cross samples referred for D typing discrepancies**

Summary of RHD referrals

2006 (Jan - Sept) 9 months/ 210 samples

RHD	num
Crawford weak D type 2 type 18 type 1 type 15 Del (M295I) Partial DAU-2	15 7 3 2 1 1 1 2
D+ with anti-D DAR DIIIa Crawford DIVa type 1 DIVb DVI weak D type 2	3 2 2 3 1 1 2 14
RHD zygosity	16

Goal: to label all donor RBCs with D antigen as D positive

Problem:

Weak D - some are missed - even with IAT testing

D_{el} - all are typed as D negative

These can stimulate anti-D in D negative patients

<u>Important</u>: all D_{el} (to date) and majority of weak D are inherited with C+ or E+, so can be removed from the D negative donor pool by serologic typing for C and E.

Questions not yet answered:

- Will we accept no anti-D?
- In specific group girls and women of child bearing age
- Accept anti-K (HDFN) and anti-c in U.S., so inconsistent?

Serologic D typing For patient and OB testing

Goal: to detect those at risk for anti-D

"Most" weak D- are not at risk for anti-D (there are exceptions)

Partial D - at risk for anti-D, but type as D positive so are not detected

- female children & women of child-bearing age better served

treated as D negative for transfusion and RhIG candidates

Problems:

- Serologic tests cannot distinguish weak D from partial D
- Weak D mutations may also alter D epitopes

DNA genotyping for RHD

Would this resolve the "D problem"?

- More complex than change in methodology
- How to act on the results?
- <u>Variant D</u> (weak and partial)- if treat all as D negative- would be significant burden to D negative donor pool
- Additional data needed -which RHD change/generate new epitopes?

What is the Goal? To have no anti-D produce in any patient?

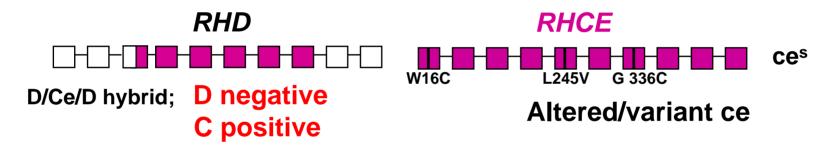
<u>High throughput platforms needed:</u>

- Many regions of gene must be sampled
- Complex algorithm for interpretation

Summary of case referrals

2006 (Jan - Sept) 9 months/ 210 samples

RHD	num
D discrepancies Crawford weak D type 2 type 18 type 1 type 15 D _{el} (M295I) Partial DAU-2	15 7 3 2 1 1 1 30
D+ with anti-D DAR DIIIa DIVa type 1 DIVb DVI weak D type 2	3 1 4 1 1 2 14
RHD zygosity	16


RHCE	num
<u>e+ variants</u> (most with anti-e)	43
C+ variants (with anti-C or -Ce	8
<u>e discrepancies</u>	6
E discrepancies	2

Many RHCE problems also

Others	Of 210 samples
ABO	14
discrepancies	
Dombrock	30
screening	
Typing multiply	14
transfused pts.	
Duffy typing	3
discrepancies	
McLeod	4
MNSs, U-	13
	_
Misc. Nulls/new	6
polymorphisms	

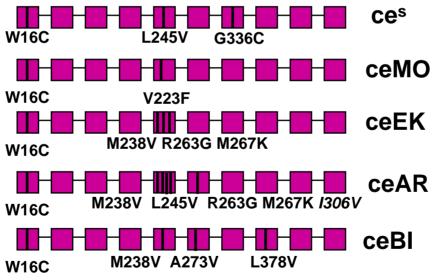
When is serologic <u>C typing</u> not straightforward?

In African Americans, Hispanic, and mixed ethnic groups with a specific *RHD-CE (3-8)-D* hybrid gene

Type as C positive; make anti-C Hybrid *D-CE-D* gene is linked to variant e; make anti-e

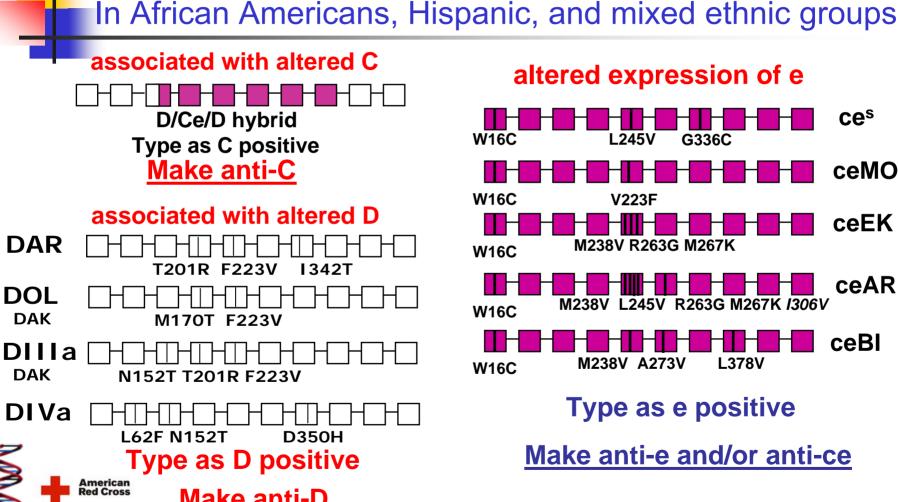
This RH haplotype is prevalent in sickle cell patients

estimated 22% African Americans


When is serologic <u>e typing</u> not straightforward?

In African Americans, Hispanic, and mixed ethnic groups

Many different genes, all encode altered expression of e antigen




Prevalent in sickle cell patients

When is serologic e typing not straightforward?

altered expression of e

Type as e positive

Make anti-e and/or anti-ce

Make anti-D

Current:

- Type multiply transfused patients
- Screen donor units when reagents are not available
- Resolve reagent typing discrepancies
 - Reveal shortcomings of current reagents- important to design of future reagents
- Predict fetal risk for hemolytic disease
 - Paternal RHD zygosity
 - Genotype fetus- amino fluid or maternal plasma
- Resolve antibody identification (is it allo or auto)
- Provide compatible donor units for sensitization sickle cell patients (variant D, C, and e antigens)

Going Forward:

Donors: Screen for antigen negative units with high throughput

- 2 types
 - One serologic
 - One DNA based

Will provide the opportunity to validate genotyping and to detect any exceptions in different populations

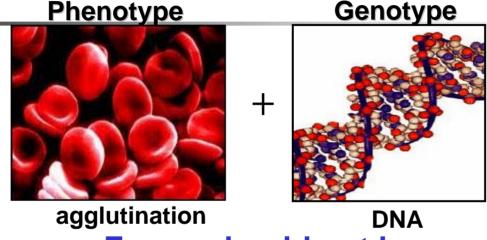
Patients: Sickle cell "antigen matching" programs

- Transfusion predicted to increase with STOP trial outcome
 - Variant C, e, and D makes "genetic match" for Rh superior
 - Detect those at risk for production of antibodies to high-incidence Rh antigens.

Role for genotyping in transfusion medicine

Future:

Integration of DNA-based assays into blood bank


- as genomics is applied to diagnosis and treatment
- Potential for "antigen" matching
 - How many antigens (15 or 50 ?)
 - Which patient population
 - Those needing long term transfusion support
 - For all
- At what cost? Or....at what savings?
 - Impact workload
 - Walk-away systems
 - Decrease sensitization=decreased ABID

Require major changes in management of donor inventory

Molecular Blood Group and Platelet Testing Laboratory

Blood group "typing"

power in combination of both technologies

Focus should not be

to prove or decide if one method is superior OR to replace all serologic typing with DNA-based testing

Focus

use each to strengthen the other

Shortcoming of D typing reagent revealed by DNA testing

use knowledge to improve serologic reagents

Shortcomings of SNP testing revealed by serology

- use knowledge to design additional SNP

Acknowledgements

- Molecular Blood Group and Platelet Testing Laboratory
 - Sunitha Vege
 - Wynn Meyer
 - Michelle Henry
 - Trina Whorley
 - Cindy Marks

Support - National Reference Laboratory Blood Group Serology

- Sandra Nance
- Staff

